teachable machine이용 모델 학습
모델 추출하기
폴더 생성 후 폴더 내에 my_model 폴더 생성하고 그 안에 다운받은 모델 내용 넣어주기
index.html 파일 생성
파일 생성 후 body에 teacherble machine에서 복사한 html/js 코드 붙여넣기. (body에 코드 티쳐블머신에서 복사한 코드 붙여넣으면 됩니다.)
파일명 : index.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
</head>
<body>
</body>
</html>
Teachable Machine에서 가져온 소스코드를 body 안에 넣습니다.
파일명 : index.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
</head>
<body>
**<div>Teachable Machine Image Model</div>
<button type="button" onclick="init()">Start</button>
<div id="webcam-container"></div>
<div id="label-container"></div>
<script src="<https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js>"></script>
<script src="<https://cdn.jsdelivr.net/npm/@teachablemachine/[email protected]/dist/teachablemachine-image.min.js>"></script>
<script type="text/javascript">
// More API functions here:
// <https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image>
// the link to your model provided by Teachable Machine export panel
const URL = "./my_model/";
let model, webcam, labelContainer, maxPredictions;
// Load the image model and setup the webcam
async function init() {
const modelURL = URL + "model.json";
const metadataURL = URL + "metadata.json";
// load the model and metadata
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
// or files from your local hard drive
// Note: the pose library adds "tmImage" object to your window (window.tmImage)
model = await tmImage.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
// Convenience function to setup a webcam
const flip = true; // whether to flip the webcam
webcam = new tmImage.Webcam(200, 200, flip); // width, height, flip
await webcam.setup(); // request access to the webcam
await webcam.play();
window.requestAnimationFrame(loop);
// append elements to the DOM
document.getElementById("webcam-container").appendChild(webcam.canvas);
labelContainer = document.getElementById("label-container");
for (let i = 0; i < maxPredictions; i++) { // and class labels
labelContainer.appendChild(document.createElement("div"));
}
}
async function loop() {
webcam.update(); // update the webcam frame
await predict();
window.requestAnimationFrame(loop);
}
// run the webcam image through the image model
async function predict() {
// predict can take in an image, video or canvas html element
const prediction = await model.predict(webcam.canvas);
for (let i = 0; i < maxPredictions; i++) {
const classPrediction =
prediction[i].className + ": " + prediction[i].probability.toFixed(2);
labelContainer.childNodes[i].innerHTML = classPrediction;
}
}
</script>**
</body>
</html>
live server로 실행
github page로 배포
모델 메타데이터 수정해보기 - 아래 json(my_model/metadata.json
)에서 labels 부분의 배열내용 수정하면 출력 라벨을 수정 가능